网上有关“二重积分计算(极坐标形式)”话题很是火热,小编也是针对二重积分计算(极坐标形式)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
极坐标下的二重积分计算法
极坐标系下,直线x=1的方程是ρcosθ=1,即ρ=1/cosθ。射线y=x的方程是θ=π/4。
确定θ的取值范围:积分区域夹在射线θ=0与θ=π/4之间,所以θ的取值范围是 0≤θ≤π/4。
确定ρ的取值范围:从极点作射线与直线ρ=1/cosθ相交,所以ρ的取值范围是 0≤ρ≤1/cosθ。
所以,二重积分在极坐标系下表示为:∫0~π/4 dθ ∫0~1/cosθ f(ρcosθ,ρsinθ) ρdρ
高等数学,关于二重积分极坐标问题
极坐标下二重积分的计算方法如下:
极坐标下的二重积分是?x^2+y^2,特别是含有它们的分数方次的情况。例如以下两种情形通常的二重积分使用极坐标计算:
积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。被积函数f(x,y)中含有形如x?+y?,xy,y/x,x/y的式子。
若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便。
二重积分几何意义:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。?
数值意义:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
如函数,其积分区域D是由所围成的区域。其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。?
故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。?
这要靠经验了,多画图就能知道原点与D的位置关系
原点在D内的情况,通常是圆心(0,0)在原点的圆系:
x^2/a^2 + y^2/b^2 = 1,包括标准圆
菱形系:|x| ≤ a,|y| ≤ b、|x| + |y| ≤ 1等等
圆点在D边界上的情况,通常是以x轴或y轴为切线的圆
例如x^2 + y^2 = 2ax、x^2 + y^2 = 2ay,可用对称性化简
或长方形:0 ≤ x ≤ 1、0 ≤ y ≤ 1
原点在D外的情况多为扇形、圆环、平行四边形等等
例如a ≤ x^2 + y^2 ≤ b和y = x,y = 2x
x = 1,y = 1和y = x + 1、y = x + 2
y = 1/x、y = 2/x和y = x、y = 2x等等
对于原点在D外的情况,多用变量变换的方法来化简
使D贴近原点或x轴y轴、或变为容易积分的长方形区域
积分上下限的表示是由积分区域D来决定,并非被积函数
但是应否通过变量变换来化简积分步骤,就要看被积函数了
例如曾经出过多次的∫∫ e^[(y - x)/(y + x)] dxdy,D:{x + y ≤ 1,x = 0和y = 0}
这题就好用变量变换u = y - x,v = y + x
也有积分区域D很复杂,而要通过被积函数的变量变换来化简
例如你这题∫∫ (x^2/a^2 + y^2/b^2) dxdy,D:{x? + y? ≤ R?}
可通过u = x/a、v = y/b化简,那么区域D就变为椭圆了
椭圆和标准圆之间的转换也可以通过广义极坐标法变换
x = arcosθ、y = brsinθ,dxdy = abrdrdθ,将椭圆区域变为标准圆
有些圆是关于直线y = x对称(轮换对称)
例如(x - 1)^2 + (y - 1)^2 = 1,可通过变换u = x - 1、v = y - 1将圆心移到原点
当然,如果D具有对称性的话,就好利用了
对于x^2 + y^2 ≤ R^2,关于x轴和y轴都对称
有∫∫ x^2 dxdy = ∫∫ y^2 dxdy = (1/2)∫∫ (x^2 + y^2) dxdy
∫∫ (x^2/a^2 + y^2/b^2) dxdy
= (1/a^2)∫∫ x^2 dxdy + (1/b^2)∫∫ y^2 dxdy
= (1/a^2 + 1/b^2)∫∫ x^2 dxdy
= (1/2)(1/b^2 + 1/b^2)*∫∫ (x^2 + y^2) dxdy
关于“二重积分计算(极坐标形式)”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[公子欢喜]投稿,不代表亿简号立场,如若转载,请注明出处:https://www.xjgoibb.cn/yz/1377.html
评论列表(4条)
我是亿简号的签约作者“公子欢喜”!
希望本篇文章《二重积分计算(极坐标形式)》能对你有所帮助!
本站[亿简号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:网上有关“二重积分计算(极坐标形式)”话题很是火热,小编也是针对二重积分计算(极坐标形式)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...